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Abstract
We explore the role of the Lagrangian map for Lie symmetries in
magnetohydrodynamics (MHD) and gas dynamics. By converting the Eulerian
Lie point symmetries of the Galilei group to Lagrange label space, in which
the Eulerian position coordinate x is regarded as a function of the Lagrange
fluid labels x0 and time t, one finds that there is an infinite class of symmetries
in Lagrange label space that map onto each Eulerian Lie point symmetry
of the Galilei group. The allowed transformation of the Lagrangian fluid
labels x0 corresponds to a fluid relabelling symmetry, including the case where
there is no change in the fluid labels. We also consider a class of three,
well-known, scaling symmetries for a gas with a constant adiabatic index γ .
These symmetries map onto a modified form of the fluid relabelling symmetry
determining equations, with non-zero source terms. We determine under which
conditions these symmetries are variational or divergence symmetries of the
action, and determine the corresponding Lagrangian and Eulerian conservation
laws by use of Noether’s theorem. These conservation laws depend on the initial
entropy, density and magnetic field of the fluid. We derive the conservation
law corresponding to the projective symmetry in gas dynamics, for the case
γ = (n + 2)/n, where n is the number of Cartesian space coordinates, and the
corresponding result for two-dimensional (2D) MHD, for the case γ = 2. Lie
algebraic structures in Lagrange label space corresponding to the symmetries
are investigated. The Lie algebraic symmetry relations between the fluid
relabelling symmetries in Lagrange label space, and their commutators with a
linear combination of the three symmetries with a constant adiabatic index are
delineated.
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1. Introduction

There is an extensive literature on the symmetries and Hamiltonian structure of the ideal gas
dynamic equations (e.g. Salmon (1982, 1988), Ibragimov (1994), Nutku (1987), Olver and
Nutku (1988), Morrison (1998), Holm et al (1998), Hydon (2005), Bridges et al (2005),
Marsden and Ratiu (1994)) and the magnetohydrodynamic equations (e.g. Morrison (1982),
Fuchs (1991), Padhye and Morrison (1996a, 1996b), Padhye (1998), Holm et al (1998),
Kuznetsov and Ruban (2000)). The Lie point symmetry algebra of the ideal, compressible
gas dynamic and MHD equations have been obtained by Fuchs (1991). The classification of
the Lie algebra and sub-algebras of these equations has been carried out by Grundland and
Lalague (1995). The Lie point symmetries of the equations obtained by Fuchs (1991) pertain
to the Eulerian form of the equations.

The MHD equations and gas dynamic systems admit the ten-parameter Galilei Lie group.
This includes the space and time translation symmetries, the space rotations and the Galilean
boosts. This group has the Lie algebra basis of vector fields:

X1 = ∂

∂x
, X2 = ∂

∂y
, X3 = ∂

∂z
, X4 = ∂

∂t
, (1.1)

X5 = t
∂

∂x
+

∂

∂ux
, X6 = t

∂

∂y
+

∂

∂uy
, X7 = t

∂

∂z
+

∂

∂uz
, (1.2)

X8 = z
∂

∂y
− y

∂

∂z
+ uz ∂

∂uy
− uy ∂

∂uz
+ Bz ∂

∂By
− By ∂

∂Bz
, (1.3)

X9 = x
∂

∂z
− z

∂

∂x
+ ux ∂

∂uz
− uz ∂

∂ux
+ Bx ∂

∂Bz
− Bz ∂

∂Bx
, (1.4)

X10 = y
∂

∂x
− x

∂

∂y
+ uy ∂

∂ux
− ux ∂

∂uy
+ By ∂

∂Bx
− Bx ∂

∂By
. (1.5)

In the above equations (t, x, y, z) refer to the time and rectangular Cartesian space coordinates,
u is the fluid velocity; B is the magnetic field induction. We use ρ and p to denote the gas
density and pressure. The Lie symmetry operators {X1, X2, X3} represent the space translation
symmetries, and correspond via Noether’s theorem to the momentum conservation equations
along the x, y and z axes respectively; X4 is the time translation symmetry and corresponds
to the energy conservation equation; {X5, X6, X7} correspond to the Galilean boosts and give
rise to the uniform center-of-mass conservation laws; {X8, X9, X10} correspond to rotational
invariance about the x, y and z axes respectively and give rise to the angular momentum
laws. These conservation laws are derived by Morrison (1982) using a non-canonical Poisson
bracket formalism. They are also derived by Padhye (1998) and Webb et al (2005b) using a
Lagrangian form of the MHD action principle and Noether’s first theorem.

In addition to the above symmetries, there is a class of infinite-dimensional fluid relabelling
symmetries, that leave the MHD action invariant under transformation of the Lagrangian fluid
labels. The conservation laws in this latter case are associated with Noether’s second theorem
(e.g. Padhye (1998), Padhye and Morrison (1996a, 1996b), Webb et al (2005b)). Ertel’s
theorem for the conservation of potential vorticity is a consequence of an infinite class of
fluid relabelling symmetries and Noether’s second theorem. The fluid relabelling symmetries
are obtained by searching for Lie transformations that leave the Lagrangian action invariant
and involve only transformation of the Lagrangian fluid labels x0 (e.g. Salmon (1982, 1988),
Padhye and Morrison (1996a, 1996b), Padhye (1998), Webb et al (2005b)). In general one
can search for Lie transformations of the form

x′ = x + εV x, t ′ = t + εV t , x′
0 = x0 + εV x0 (1.6)
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that leave the action invariant, up to a divergence transformation, where x = x(x0, t) is the
Lagrangian map between the Eulerian fluid particle position and its Lagrangian label x0. The
Lagrangian map is the solution of the differential equation system dx/dt = u(x, t), for x,
where u is the fluid velocity, subject to the initial condition x = x0 at time t = 0. The
fluid relabelling symmetries correspond to variational symmetries of the action of the form
x′ = x, t ′ = t and x′

0 = x0 + εV x0 , in which x and t are fixed.
The allowed Lagrangian maps x = x(x0, t) are the solutions of the Euler–Lagrange

equations for the Lagrangian form of the MHD action. These equations are equivalent to the
Lagrangian momentum equation for the MHD fluid, and consist of three nonlinear, coupled
wave equations for x(x0, t), in which the Lagrangian density ρ0(x0), entropy S(x0) and
magnetic induction B0(x0) are given functions of x0. In other words, the partial differential
equation (PDE) systems consisting of (i) the Eulerian MHD equations and (ii) the coupled,
nonlinear, Lagrangian wave equations for x = x(x0, t), for given ρ0(x0), S(x0) and B0(x0) are
equivalent systems via the Lagrangian map (see (2.19) et seq and appendix A)

A question we address is how are the Eulerian Lie symmetries, as exemplified by
the Galilei group symmetry operators (1.1)–(1.5) related to the Lagrangian symmetry
transformations (1.6)? One answer to this question has been provided by Padhye and Morrison
(1996a, 1996b) and Padhye (1998) who characterized the Galilei group by transformations
using the Lagrangian map in which V x0 = 0 but with V x �= 0 and V t �= 0. We explore Lie
transformations for which all of the infinitesimal Lie generators V t , V x and V x0 are non-zero.
We use the Lie extension formulae for transformation of derivatives of the dependent variables
(e.g. Ibragimov (1985), Bluman and Kumei (1989), Olver (1993)), to convert Lie symmetries
from the Eulerian form to their corresponding form in Lagrange label space. We find
that the Lie point symmetries of the Galilei group (1.1)–(1.5) correspond to an infinite
class of Lie symmetries of the form (1.6) in Lagrange label space, in which V x0 satisfy
the Lie determining equations for the fluid relabelling symmetries. The equations also
admit solutions with V x0 = 0, which correspond to the Lagrangian description of the Lie
point symmetries of the Galilei group in Padhye and Morrison (1996a, 1996b) and Padhye
(1998).

The Galilei symmetries do not depend on the equation of state of the gas. However, there
is a class of Lie point symmetries of the Eulerian gas dynamic and MHD equations that apply
if the gas has a polytropic equation of state of the form

ε = p

γ − 1
, S = Cv ln

[
p

p1

(
ρ1

ρ

)γ ]
, p = p1

(
ρ

ρ1

)γ

exp(S̄), (1.7)

where ρ1 and p1 are constant normalizing values of the density and gas pressure, ε is
the internal energy density of the gas, S is the entropy (S̄ = S/Cv), Cv is the specific
heat of the gas at constant volume and γ is the adiabatic index of the gas. Using
(t, x, y, z, ux, uy, uz, Bx, By, Bz, p, ρ)t as variables in the Eulerian MHD equations, Fuchs
(1991) obtained the scaling symmetries:

X11 = t
∂

∂t
− ux ∂

∂ux
− uy ∂

∂uy
− uz ∂

∂uz
+ 2ρ

∂

∂ρ
, (1.8)

X12 = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
+ ux ∂

∂ux
+ uy ∂

∂uy
+ uz ∂

∂uz
− 2ρ

∂

∂ρ
, (1.9)

X13 = Bx ∂

∂Bx
+ By ∂

∂By
+ Bz ∂

∂Bz
+ 2ρ

∂

∂ρ
+ 2p

∂

∂p
. (1.10)
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If the adiabatic index of the gas γ = (n + 2)/n, where n is the number of Cartesian space
dimensions (γ = 5/3, 2, 3 for n = 3, 2, 1 respectively), then the ideal gas dynamic equations
admit the projective symmetry (e.g. Ovsjannikov (1962), Ibragimov (1985)):

X14 = txα ∂

∂xα
+ (xi − tui)

∂

∂ui
− ntρ

∂

∂ρ
− (n + 2)tp

∂

∂p
. (1.11)

In (1.11) xα = (t, x, y, z)t , and we use the Einstein summation convention for repeated
indices. The Greek indices α = 0, 1, 2, 3 correspond to the spacetime coordinates (t, x, y, z),
and the Latin indices i = 1, 2, 3 pertain to the space coordinates (x, y, z).

The Lie algebra of the symmetries {Xj : 1 � j � 14} and the classification of the
subgroups and conjugacy classes of the Lie algebra are given in Grundland and Lalague
(1995). Grundland and Lalague use the notation

Pµ = ∂

∂xµ
, Ki = x0 ∂

∂xi
+

∂

∂ui
,

Jk = εkij

(
xj ∂

∂xi
+ uj ∂

∂ui
+ Bj ∂

∂Bi

) (1.12)

to describe the Galilei group (1.1)–(1.5). The symmetries Pµ (µ = 0, 1, 2, 3) correspond to
the time and space translation symmetries (1.1), where xµ = (t, x, y, z). Ki (i = 1, 2, 3) are
the Galilean boosts (1.2) and Jk are the rotational symmetries (1.3)–(1.5). εijk is the Levi-
Civita symbol or antisymmetric tensor density. Grundland and Lalague use the symmetries:
F = X11 + X12,G = X13 − X11 and H = X13 as alternative basis vector fields instead of
X11, X12 and X13, and use the symbol C ≡ X14 for the projective symmetry X14. A more
complete list of the various forms of the gas dynamic equations in one, two and three space
dimensions, and related equations, such as the Monge–Ampere equations is given in Ibragimov
(1994).

We address the question: what are the conservation laws (if any) associated with the
symmetries (1.8)–(1.11) using Noether’s theorems? We use the form of Noether’s theorem
based on the Lagrangian action principle developed by Newcomb (1962). Alternative
variational principles using Clebsch potentials to incorporate the constraints of mass
conservation, entropy advection, and the frozen magnetic field (Faraday’s law) could also
in principle be used (e.g. Lundgren (1963), Holm and Kupershmidt (1983a, 1983b), Zakharov
and Kuznetsov (1984)).

If the generalized symmetry operator

X(a) = αX11 + βX12 + δX13 (1.13)

is a divergence symmetry or variational symmetry of the action, then Noether’ first theorem
can be used to write down the corresponding conservation law (e.g. Olver (1993), Bluman and
Kumei (1989)). We use the subscript a in (1.13) to emphasize that this symmetry is associated
with an adiabatic equation of state for the gas, with a constant adiabatic index γ . It turns out
that the condition for the symmetry (1.13) to be a variational symmetry of the action is that

α + 2δ + nβ = 0, (1.14)

where n is the number of Lagrangian fluid labels x0 in the variational principle, and α, β and
δ are constants.

In section 2 we present the Lagrangian variational principle for MHD and the Lagrangian
map developed by Newcomb (1962). Section 3 derives Noether’s theorem for Lagrangian
MHD and the condition that must be satisfied for a divergence symmetry of the action. Both
the Lagrangian and Eulerian form of the conservation laws for a given Lie symmetry are
obtained. The Lie determining equations for a fluid relabelling symmetry are discussed.
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The Eulerian Lie point symmetries of the Galilei group and the projective symmetry, for
γ = (n + 2)/n of (1.11) in gas dynamics, are converted to the Lagrangian form by using
the Lie extension formulae for the transformation of derivatives of the dependent variables.
Section 4 concerns the determination of the Lagrangian form of the Eulerian point symmetry
X(a) of (1.13) for an adiabatic gas with a constant adiabatic index γ , and condition (1.14) for
the symmetry to be a variational symmetry of the action is derived. Noether’s theorem is used
in section 5 to obtain the MHD conservation law for the symmetry X(a) for the case when
α + 2δ + nβ = 0. Section 6 also obtains conservation laws for the symmetry X(a) for gas
dynamics when there is no magnetic field present, as well as the conservation law associated
with the projective symmetry X14 in (1.11) (see also appendix C and Fuchs and Richter (1987)
for the case of 2D MHD, with an ignorable coordinate z, with B = (0, 0, B)t ). Section 7
considers the Lie algebra of vector fields in Lagrange label space for both the relabelling
symmetries and the generalized symmetry X(a). The Lie brackets of the fluid relabelling
symmetries with the Galilei, Lie point symmetries with V x0 = 0 are all zero. Section 8
concludes with a summary and discussion.

2. Magnetohydrodynamics

In this section we consider the variational form of the MHD equations, using the Lagrangian,
variational approach of Newcomb (1962).

The time-dependent Eulerian MHD equations consist of the mass, momentum and entropy
advection equations

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + J × B − ρ∇	, (2.2)

∂S

∂t
+ u · ∇S = 0, (2.3)

coupled with Maxwell’s equations in the MHD limit:

∂B
∂t

= ∇ × (u × B) , (2.4)

J = ∇ × B
µ0

, ∇ · B = 0. (2.5)

Maxwell’s equations (2.4) and (2.5) correspond to Faraday’s induction equation, Ampere’s
law for the current J and Gauss’s equation ∇ · B = 0. The force Fg = −ρ∇	 is the
force associated with the external gravitational potential 	. The above equations need to be
supplemented by an equation of state for the gas internal energy density ε = ε(ρ, S) and the
second law of thermodynamics. For an ideal gas, the second law of thermodynamics, for an
ideal gas, gives

p = ρ
∂ε

∂ρ
− ε, ρT = ∂ε

∂S
, (2.6)

for the pressure p and the temperature T of the gas.
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2.1. The Lagrangian map and variational formulation

The Lagrangian map: x = X(x0, t) is obtained by integrating the fluid velocity equation
dx/dt = u(x, t), subject to the initial condition x = x0 at time t = 0. In this approach,
the mass continuity equation and entropy advection equation are replaced by the equivalent
algebraic equations

ρ = ρ0(x0)

J
, S = S(x0), (2.7)

where

J = det(xij ) and xij = ∂xi(x0, t)

∂x
j

0

. (2.8)

Similarly, Faraday’s equation (2.4) has the formal solution for the magnetic field induction B
of the form

Bi = xijB
j

0

J
, ∇0 · B0 = 0. (2.9)

Solution (2.9) for Bi is equivalent to the frozen in field theorem in MHD (e.g. Stern (1966),
Parker (1979)), and the initial condition ∇0 · B0 = 0 is imposed in order to ensure that Gauss’s
law ∇ · B = 0 is satisfied.

The Lagrangian map x = X(x0, t) and its inverse x0 = X0(x, t) are characterized by the
relations

xisysp = δi
p,

∂xi

∂t
+ xis

∂xs
0

∂t
= 0, (2.10)

where

xis = ∂xi

∂xs
0

and ysp = ∂xs
0

∂xp
. (2.11)

From (2.10) and (2.11) we obtain

∂xi
0

∂t
+ us ∂xi

0

∂xs
= 0, (2.12)

showing that the Lagrange label x0 is advected with the background flow with velocity
u = ∂x(x0, t)/∂t .

From Cramer’s rule

yij = Aji

J
, xij = JBji, (2.13)

where Aij = cofac(xij ) and Bij = cofac(yij ) are the co-factor matrices associated with xij

and yij (note Aij and Bij are inverse matrices). One can show:

Aij = 1
2εipqεjmnxpmxqn, Bij = 1

2εipqεjmnypmyqn, (2.14)

where εijk is the anti-symmetric permutation tensor density (see, e.g., Newcomb (1962)).
From (2.14) it follows that ∂Aij /∂x

j

0 = 0 and ∂Bij /∂xj = 0.
The action for the MHD system is

A =
∫ ∫

Ld3x dt ≡
∫ ∫

L0d3x0 dt, (2.15)

where

L = 1

2
ρ|u|2 − ε(ρ, S) − B2

2µ
− ρ	, L0 = LJ, (2.16)
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are the Eulerian (L) and Lagrangian (L0) Lagrange densities respectively. Using (2.7)–(2.9),
and (2.16) we obtain

L0 = 1

2
ρ0|xt |2 − Jε

(ρ0

J
, S

)
− xij xisB

j

0 Bs
0

2µJ
− ρ0	, (2.17)

forL0. Note that in the Lagrange densityL0 = L0(x0, t; x, xt , xij ), x0 and t are the independent
variables, and x and its derivatives with respect to x0 and t are dependent variables.

Extremization of the action in (2.15) gives the Euler–Lagrange equations:

δA

δxi
= ∂L0

∂xi
− ∂

∂t

(
∂L0

∂xi
t

)
− ∂

∂xs
0

(
∂L0

∂xij

)
= 0, (2.18)

where xij ≡ ∂xi/∂x
j

0 . Evaluation of the variational derivative (2.18) gives the Lagrangian
momentum equation for the system in the form (Newcomb (1962))

ρ0

(
∂2xi

∂t2
+

∂	

∂xi

)
+

∂

∂x
j

0

{
Akj

[(
p +

B2

2µ

)
δik − BiBk

µ0

]}
= 0, (2.19)

where Akj = cofac(xkj ). Dividing (2.19) by J , and using the fact that ∂Akj/∂x
j

0 = 0, gives
the Eulerian form of the momentum equation (2.2).

Note that (2.19) can be reduced to three coupled nonlinear wave equations for xi =
xi(x0, t) for an equation of state p = p(ρ, S) for the gas, in which ρ0(x0), S(x0) and B0(x0)

are given functions of x0 where ∇0 · B0 = 0 (see appendix A). The characteristic manifolds
of (2.19) correspond to the usual Alfvén, fast and slow magnetoacoustic waves respectively
(appendix A). Thus, the allowed Lagrangian maps x = x(x0, t) are solutions of the wave
equations (A.1) with x = x0 at time t = 0.

The above analysis uses Lagrangian variations of the action in which x0 is fixed. The
Lagrangian variation of x(x0, t; ε) is defined as 
x = ∂x/∂ε evaluated at ε = 0 and
keeping x0 fixed. It is also possible to extremize the first form of the action in (2.15) using
Eulerian variations in which x is held constant, leading to the Eulerian form of the momentum
equation (2.2).

3. Symmetries and Noether’s theorem in MHD

In this section we discuss Noether’s first theorem in MHD. The analysis is similar to that in
Padhye (1998) and Webb et al (2005b). We consider the Lagrangian form of action (2.15),
namely

A =
∫ ∫

L0d3x0 dt, (3.1)

where the Lagrangian density L0 is given by (2.17).

Proposition 3.1 (Noether’s theorem). If action (3.1) is invariant to O(ε) under the infinitesimal
Lie transformations:

x ′i = xi + εV xi

, x
′j
0 = x

j

0 + εV x
j

0 , t ′ = t + εV t , (3.2)

and the divergence transformation:

L0′ = L0 + εDα�α
0 + O(ε2), (3.3)
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(here D0 ≡ ∂/∂t and Di ≡ ∂/∂xi
0 are the total derivative operators in the jet space consisting

of the derivatives of xk(x0, t) and physical quantities that depend on x0 and t) then the MHD
system admits the Lagrangian conservation law:

∂I 0

∂t
+

∂I j

∂x
j

0

= 0, (3.4)

where

I 0 = ρ0u
kV̂ xk

+ V tL0 + �0
0, (3.5)

I j = V̂ xk

[(
p +

B2

2µ

)
δks − BkBs

µ

]
Asj + V x

j

0 L0 + �
j

0, (3.6)

In (3.5) and (3.6)

V̂ xk(x0,t) = V xk(x0,t) −
(

V t ∂

∂t
+ V xs

0
∂

∂xs
0

)
xk(x0, t), (3.7)

is the canonical Lie symmetry transformation generator corresponding to the Lie
transformation (3.2) (i.e. x ′k = xk + εV̂ xk

, t ′ = t, x
′j
0 = x

j

0 ).

Proof. Using Noether’s theorem (e.g. Bluman and Kumei (1989)) we obtain

I 0 = W 0 + V tL0 + �0
0 ≡ ∂L0

∂xk
t

V̂ xk

+ V tL0 + �0
0,

I j = Wj + L0V x
j

0 + �
j

0 ≡ ∂L0

∂xkj

V̂ xk

+ L0V x
j

0 + �
j

0,

(3.8)

for the conserved density I 0 and flux components I j . Using (2.17) for L0 in (3.8) to evaluate
the derivatives of L0 with respect to xk

t and xij gives expressions (3.5) and (3.6) for I 0 and I j .
Proofs of Noether’s first theorem are given in Bluman and Kumei (1989) and Olver (1993)
(see Webb et al (2005b) for Noether’s theorem for the MHD system, including the effects of
fully nonlinear waves). �

Comment 1

The condition for action (3.1) to be invariant to O(ε) under the divergence transformation of
the form (3.2) and (3.3) is

X̃L0 + L0(DtV
t + D

x
j

0
V x

j

0
)

+ Dt�
0
0 + D

x
j

0
�

j

0 = 0, (3.9)

where

X̃ = V t ∂

∂t
+ V xk ∂

∂xk
+ V xk

t
∂

∂xk
t

+ V xkj
∂

∂xkj

+ · · · , (3.10)

is the extended Lie transformation operator acting on the jet space of the Lie transformation
(3.2). Note that X̃ gives the rules for transforming derivatives of xk(x0, t) under Lie
transformation (3.2). From Ibragimov (1985)

X̃ = X̂ + V αDα, (3.11)

X̂ = V̂ xk ∂

∂xk
+ Dα(V̂ xk

)
∂

∂xk
α

+ DαDβ(V̂ xk

)
∂

∂xk
αβ

+ · · · , (3.12)
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where D0 = ∂/∂t Di = ∂/∂xi
0 denote total partial derivatives with respect to t and xi

0

(1 � i � 3), V 0 ≡ V t and V i ≡ V xi
0 respectively. X̂ is the extended Lie symmetry operator

corresponding to the canonical Lie transformation x ′k = xk + εV̂ xk

, t ′ = t and x
′j
0 = x

j

0 .

Comment 2

The basic conservation law (3.4) and condition (3.9) for the action to be invariant under a
divergence symmetry are a consequence of the identity

X̃L0 + L0DαV α + Dα�α
0 = V̂ xi

Exi (L0) + Dα(Wα + L0V α) + Dα�α
0 , (3.13)

where Exi (L0) = δA/δxi is the variational derivative of A with respect to xi in (2.18) and
Wα = V̂ xk

∂L0/∂xk
α is a surface vector term that arises in the proof of Noether’s theorem.

Identity (3.13) is discussed in further detail in appendix B.
To convert the Lagrangian conservation law (3.4) to its equivalent Eulerian form we use

a result of Padhye (1998) given below.

Theorem 3.1. The Lagrangian conservation law (3.4) can be written as an Eulerian
conservation law of the form

∂F 0

∂t
+

∂F j

∂xj
= 0, (3.14)

where

F 0 = I 0

J
, F j = uj I 0 + xjkI

k

J
, (j = 1, 2, 3), (3.15)

are the conserved density F 0 and flux components F j .

Proposition 3.2. The Lagrangian conservation law (3.4) with conserved density I 0 of (3.5),
and flux I j of (3.6), is equivalent to the Eulerian conservation law:

∂F 0

∂t
+

∂F j

∂xj
= 0, (3.16)

where

F 0 = ρukV̂ xk(x0,t) + V tL + �0, (3.17)

F j = V̂ xk(x0,t)(T jk − Lδjk) + V xjL + �j, (3.18)

T jk = ρujuk +

(
p +

B2

2µ

)
δjk − BjBk

µ
, (3.19)

�0 = �0
0

J
, �j = uj�0

0 + xjs�
s
0

J
. (3.20)

In (3.16)–(3.20) T jk is the Eulerian momentum flux tensor (i.e. the spatial components of the
stress energy tensor) and V̂ xk(x0,t) is the canonical symmetry generator (3.6).

Comment

Padhye and Morrison (1996a, 1996b) and Padhye (1998) used theorem 3.1 to convert
Lagrangian conservation laws to Eulerian conservation laws. Webb et al (2005b) derived
Lagrangian and Eulerian conservation laws associated with a given Lie symmetry using
propositions 3.1 and 3.2, including the effects of fully nonlinear MHD waves in a non-uniform
and time-dependent background flow, based on the MHD action principle. Linear waves in
a non-uniform background flow were studied in Webb et al (2005a), thus extending similar
work by Dewar (1970) for WKB waves.
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3.1. Fluid relabelling symmetries

Consider infinitesimal Lie transformations of the form (3.2) and (3.3), with

V t = 0, V x = 0, V x0 �= 0, �α
0 = 0, (3.21)

which leave action (3.1) invariant. The extended Lie transformation operator X̃ for the case
(3.21) has generators:

V̂ x = −V x0 · ∇0x, V xt = −Dt(V
x0) · ∇0x,

V ∇0x = −∇0(V
x0) · ∇0x.

(3.22)

Condition (3.9) for a divergence symmetry of the action reduces to

∇0 · (ρ0V
x0)

(
1

2
|u|2 − 	(x) − ε + p

ρ

)
− J

∂ε(ρ, S)

∂S
V x0 · ∇0S

−Dt(ρ0V
x0) · ∇0x · u − 1

µJ
(∇0x) · (∇0x)T :[(V x0 · ∇0B0)B0

+ B0B0∇0 · V x0 − (B0 · ∇0V
x0)B0] = 0. (3.23)

Equations (3.23) are satisfied if V x0 , B0, ρ0 and S satisfy the equations

∇0 · (ρ0V
x0) = 0, V x0 · ∇0S = 0, Dt(ρ0V

x0) = 0,

∇0 × (V x0 × B0) = 0, ∇0 · B0 = 0.
(3.24)

Equations (3.24) are the Lie determining equations for the fluid relabelling symmetries
obtained by Padhye (1998) and Webb et al (2005b). These equations apply for a general
equation of state for the gas with ε = ε(ρ, S) and also apply in an external gravitational field
described by the gravitational potential 	. The fluid relabelling symmetries do not change the
Eulerian physical variables ρ, u, S, p, B under the Lie transformation (3.21).

3.2. The Galilei group

In this section we derive the Lagrangian symmetry operators that correspond to the Galilei
group.

Proposition 3.3. The Galilei group Eulerian symmetries Pµ,Ki and Jk in (1.12) correspond
to the Lagrangian symmetry operators:

P L
µ = ∂

∂xµ
+ V x0 · ∇0, KL

i = t
∂

∂xi
+ V x0 · ∇0,

J L
k = εkij x

j ∂

∂xi
+ V x0 · ∇0,

(3.25)

where V x0 satisfies the fluid relabelling symmetry equations (3.24).

Proof. We illustrate the method of proof for the time translation symmetry operator P0 = ∂/∂t .
Consider the time translation symmetry X1 = ∂/∂t of (1.1) with Eulerian symmetry generators

V t = 1, V xi = 0, V ui = V Bi = V p = V ρ = 0. (3.26)

Using the Lie extension formula

V xi
t = Dt

(
V xi ) − Dt(V

t )xi
t − Dt(V

xs
0 )xis, (3.27)

for V ui ≡ V xi
t in Lagrange label space, we find

V ui = −Dt

(
V xs

0
)
xis = 0 or Dt

(
V xs

0
) = 0. (3.28)
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Similarly, the Lie extension formula

V xij = D
x

j

0
(V xi

) − D
x

j

0
(V t )xi

t − D
x

j

0
(V xs

0 )xis, (3.29)

and (3.26) imply

V xij = −D
x

j

0

(
V xs

0
)
xis . (3.30)

From the equation V ρ = 0 we deduce

V ρ = X̃(ρ) ≡ X̃
(ρ0

J

)
= 1

J
∇0 · (ρ0V

x0) = 0. (3.31)

Because S̄ = S̄(x0) = f (p, ρ) is the general equation of state for the gas, we find

X̃1S̄ = fpV p + fρV
ρ ≡ V x0 · ∇0S̄ = 0. (3.32)

Noting that Bi = xijB
j

0 /J from (2.9) the condition V Bi = 0 in (3.26) implies

V Bi = xij

J
[V x0 · ∇0B0 + B0∇0 · V x0 − B0 · ∇0V

x0 ]j

≡ −xij

J
[∇0 × (V x0 × B0) − V x0∇0 · B0]j = 0. (3.33)

Noting that we require ∇0 · B0 = 0 to ensure that ∇ · B = 0, (3.28), (3.31)–(3.33), require that
V x0 and B0 must satisfy the Lie determining equations (3.24) for the relabelling symmetries.
The method of proof is similar for the other Eulerian Lie point symmetries in (1.12) or
(1.1)–(1.5). �

3.3. The projective symmetry X14 of gas dynamics

Proposition 3.4. The Eulerian, projective symmetry operator X14 of gas dynamics, for a gas
with an adiabatic index of γ = (n + 2)/n (n is the number of Cartesian space dimensions),
has the Lagrangian symmetry operator

XL
14 = txµ ∂

∂xµ
+ V x0 · ∇0, (3.34)

where V x0 satisfies the fluid relabelling symmetry determining equations with B0 = 0.

Proof. Consider the projective symmetry X14 in (1.11) for ideal, gas dynamics with
γ = (n + 2)/n. The Eulerian version of this symmetry has Lie symmetry generators:

V t = t2, V xi = txi, V ui = xi − tui,

V ρ = −ntρ, V p = −(n + 2)tp.
(3.35)

Following the procedure to convert symmetries from Eulerian to the Lagrangian form used
in proposition 3.3, we find that V x0 must satisfy the fluid relabelling determining equations
(3.24) with B0 = 0. We derive the conservation law associated with X14 in section 6 (see
also Ibragimov (1994)). The projective symmetry in 2D MHD, with an ignorable Cartesian
space coordinate z, with B = (0, 0, B) is described in appendix C (see also Fuchs and Richter
(1987)). �
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4. Lagrangian symmetries for X(a)

There are two tasks involved before one can establish conservation laws associated with
the symmetry operator X(a) in (1.13). First, it is necessary to convert the symmetry into its
Lagrangian form, and second it is necessary to determine the conditions for which the symmetry
is a divergence symmetry or a variational symmetry of the MHD action, by investigating
the conditions under which (3.9) is satisfied. After these two tasks are accomplished, the
conservation laws may be determined by the use of Noether’s first theorem.

In the following analysis we neglect the effect of gravity and set 	 = 0.

4.1. The symmetry operator X(a)

The symmetry operator X(a) from (1.13) and (1.8)–(1.10) can be written in the form

X(a) = V t ∂

∂t
+ V xi ∂

∂xi
+ V ρ ∂

∂ρ
+ V ui ∂

∂ui
+ V p ∂

∂p
+ V Bi ∂

∂Bi
, (4.1)

where

V t = αt, V xi = βxi, V ui = (β − α)ui, V Bi = δBi,

V ρ = (2α + 2δ − 2β)ρ, V p = 2δp.
(4.2)

To reduce the symmetry operator X(a) to the Lagrangian form entails writing the extended Lie
transformation operator in the form

X̃(a) = V t ∂

∂t
+ V xi ∂

∂xi
+ V xs

0
∂

∂xs
0

+ V xi
t

∂

∂xi
t

+ V xij
∂

∂xij

+ · · · , (4.3)

where xi = xi(x0, t) is regarded as a function of x0 and t.

Proposition 4.1. The Lagrangian, Lie symmetry generator V x0 in (4.3) corresponding to the
Eulerian Lie operator of (4.1) and (4.2) satisfies the Lie determining equations:

∇0 · (ρ0V
x0) = ρ0[2α + 2δ + (n − 2)β], Dt(V

x0) = 0, (4.4)

V S̄ = V x0 · ∇0S̄ = 2[δ(1 − γ ) + γ (β − α)], (4.5)

∇0 × (V x0 × B0) = −[δ + β(n − 1)]B0, (4.6)

∇0 · B0 = 0, (4.7)

where S̄ = S/Cv . The entropy constraint equation (4.5) is equivalent to

V x0 · ∇0p0 + γp0∇0 · V x0 = p0(2δ + nγβ). (4.8)

Equation (4.8) is a result of a combination of the first equation (4.4) and the entropy generator
equation (4.5).

Proof. The proof is based on the Lie extension formulae for the transformation of derivatives
of x(x0, t). Using the Lie extension formula

V xi
t = Dt(V

xi

) − Dt(V
t )xi

t − Dt(V
xs

0 )xis, (4.9)

we find

V ui = (β − α)ui ≡ V xi
t = (β − α)xi

t − Dt

(
V xs

0
)
xis, (4.10)

and hence

Dt

(
V xs

0
) = 0, (4.11)
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is a constraint on V xs
0 for a consistent solution. Similarly, using the extension formula

V xij = D
x

j

0

(
V xi ) − D

x
j

0
(V t )xi

t − D
x

j

0

(
V xs

0
)
xis, (4.12)

in conjunction with the expressions for V xi

and V t from (4.2) gives

V xij = βxij − D
x

j

0

(
V xs

0
)
xis, (4.13)

for V xij .
Next using the Lagrangian continuity equation (2.7) and the symmetry generator V ρ in

(4.2) we obtain

V ρ = X̃(a)ρ ≡ X̃(a)

(ρ0

J

)
= (2α + 2δ − 2β)

ρ0

J
. (4.14)

However, using (4.13) gives

X̃(a)J = V xij
∂J

∂xij

= V xij Aij = (nβ − ∇0 · V x0)J, (4.15)

where n is the number of independent x0 labels. Using (4.15) in (4.14) gives

∇0 · (
ρ0V

x0
) = ρ0 [2α + 2δ + (n − 2)β] , (4.16)

where ∇0 ≡ ∂/∂x0 denotes the gradient operator in x0 label space. In the derivation of (4.15)
use has been made of Cramer’s rule xijAis = Jδjs . Equations (4.16) and (4.11) are the two
equations listed in (4.4). These equations are reminiscent of the continuity equation for steady
flow, with a source, in which V x0 plays the role of the fluid velocity in x0 label space.

Next consider the constraint that the entropy S = S(x0). Using S̄ = S/Cv = ln(p/ργ ),
and V p and V ρ from (4.12) gives

V S̄ = X̃(a)S̄ = V x0 · ∇0S̄ = V p

p
− γ

V ρ

ρ
= 2 [δ(1 − γ ) + γ (β − α)] . (4.17)

This is (4.5) for V S̄ . Using S̄ = ln(p0/ρ
γ

0 ) is solely a function of the Lagrange label x0, (4.17)
coupled with the ‘continuity’ equation (4.16) for V x0 implies

V x0 · ∇0p0 + γp0∇0 · V x0 = p0(2δ + nγβ), (4.18)

as the alternative form (4.8) of the constraint imposed by requiring that S = S(x0).
Consider the Lagrangian form of the Lie transformation for the magnetic field. From

the frozen in field theorems (2.9) and (2.13) we obtain Bi = xikB
k
0/J ≡ BkiB

k
0 . Because

∂Bki/∂xi = 0 we obtain

∇ · B = ∂Bi

∂xi
= Bki

∂Bk
0

∂xi
= 1

J
∇0 · B0. (4.19)

Thus, to ensure ∇ · B = 0 we require ∇0 · B0 = 0 as in (4.7).
From the Eulerian Lie transformation equation V Bi = δBi in (4.2) we have

V Bi = X̃(a)B
i = X̃(a)

(
xijB

j

0

J

)
= δBi. (4.20)

Using the Lagrangian form of the Lie transformation operator X̃ from (4.3), and result (4.13)
for V xij , (4.20) reduces to

xij

J
{V x0 · ∇0B0 − B0 · ∇0V

x0 + ∇0 · V x0 + [(1 − n)β − δ]B0}j = 0. (4.21)

Noting that ∇0 · B0 = 0 and assuming J �= 0, (4.21) may be re-written in the form (4.6). This
completes the proof. �
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Proposition 4.2. Condition (3.9) for X̃(a) to be a variational symmetry of the MHD action
(3.1), in which the symmetry satisfies the Lie determining equations (4.4)–(4.8) may be written
in the form

X̃(a)L0 + (DtV
t + ∇0 · V x0)L0 = (α + 2δ + nβ)L0. (4.22)

Thus, X̃(a) is a variational symmetry of action (3.1) if

α + 2δ + nβ = 0, (4.23)

and V x0 satisfies (4.4)–(4.8). In the latter case, Noether’s theorem (propositions 3.1 and 3.2)
guarantees the existence of a Lagrangian conservation law of the form (3.4) and an equivalent
Eulerian conservation law of the form (3.16) associated with the symmetry.

Proof. Evaluation of the left-hand side of (4.22), where L0 is given by (2.17) and using the Lie
determining equations (4.4)–(4.8), gives result (4.22). Thus, if condition (4.23) is satisfied,
the symmetry is a variational symmetry of the action. �

4.2. Determining equation solutions

In this section we obtain solutions of the Lie determining equations (4.4)–(4.8).

Proposition 4.3. The Lie determining equations (4.4) and (4.6) for V x0 and B0 can be
re-written in the form

b0 · ∇0V
x0 − V x0 · ∇0b0 = δ4b0, (4.24)

where

b0 = B0

ρ0
and δ4 = δ + 2α − β. (4.25)

Equation (4.24) for δ4 �= 0 defines a two-dimensional, non-Abelian Lie algebra for the vector
fields

X1 = b
j

0

∂

∂x
j

0

, X2 = V x
j

0
∂

∂x
j

0

, (4.26)

with Lie bracket [Xα,Xβ ] satisfying the commutation relation

[X1, X2] = δ4X1. (4.27)

From Frobenius’s theorem, the set of vector fields {Xα : α = 1, 2} form a Lie algebra, and
hence an integrable manifold x0 = x0(y1, y2), and the vector fields are said to be in involution.
The two-dimensional Lie algebra {X1, X2} defined by (4.27) has the representation

X1 = δ4y1
∂

∂y2
, X2 = −δ4y1

∂

∂y1
, (4.28)

where y1(x0) and y2(x0) are independent functions of x0. The vector fields b0 and V x0 have
solutions

b0 = δ4y1e2, V x0 = −δ4y1e1, e1 = ∂x0

∂y1
, e2 = ∂x0

∂y2
, (4.29)

where y1(x0) and y2(x0) are independent functions of x0, and e1 and e2 are holonomic base
vectors normal to the y1 = const and y2 = const surfaces.

Proof. From (4.6)–(4.7),

B0 · ∇0V
x0 − B0∇0 · V x0 − V x0 · ∇0B0 = −[δ + β(n − 1)]B0. (4.30)
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Solving the ‘continuity’ equation (4.4) for ∇ · V x0 gives

∇0 · V x0 = −V x0 · ∇0 ln ρ0 + [2α + 2δ + (n − 2)β]. (4.31)

Using (4.31) for ∇0 · V x0 in (4.30) gives result (4.24) relating V x0 and b0 = B0/ρ0. Next we
note that the Lie bracket of the vector fields X1 and X2 in (4.26) is defined as

[X1, X2] = X1X2 − X2X1 = (
b0 · ∇0V

xi
0 − V x0 · ∇0b

i
0

) ∂

∂xi
0

, (4.32)

from which it follows that (4.24) can be written as the Lie bracket equation (4.27).
Note that the vector fields {Xα : α = 1, 2} in (4.28) have the form Xα = Cµ

ανyµ∂/∂yν ,
where Cµ

αν are the structure constants of the Lie algebra. From (4.29) and (4.26) it follows
that

bs
0 = δ4y1

∂xs
0

∂y2
, V xs

0 = −δ4y1
∂xs

0

∂y1
, (4.33)

are solutions for bs
0 and V xs

0 satisfying (4.24). These solutions for b0 and V x0 can be written
in the more geometrically revealing form (4.29). This completes the proof. �

Comment

The Frobenius integrability theorem guarantees that for given vector fields b0 and V x0 , the
differential equations (4.33) for x0(y1, y2) are integrable, as a consequence of the fact that
the vector fields X1 and X2 form a two-dimensional Lie algebra defined by (4.27). This is
easily demonstrated from differentiating (4.33) with respect to y1 and y2 and requiring that
the solution has continuous second-order derivatives.

Proposition 4.4

b0 · ∇0y1 = 0, b0 · ∇0y2 = δ4y1,

V x0 · ∇0y1 = −δ4y1, V x0 · ∇0y2 = 0.
(4.34)

Proof. Results (4.34) follow by noting X1 = b0 · ∇0 and X2 = V x0 · ∇0 and by using
representation (4.28) for X1 and X2. Note that (4.34) implies that B0 lies in the y1 = const
surface, and V x0 lies in the y2 = const surface. �

4.2.1. Geometrical aspects. So far, the analysis of (4.4) and (4.6) has revealed that V x0 and b0

lie in the surface x0 = x0(y1, y2, c), where c = const. The family of surfaces x0 = x0(y1, y2, c)

for different c can also be written as y3 = const, where y3(x0) is independent of y1 and y2.
Thus, we can use

e1 = ∂x0

∂y1
, e2 = ∂x0

∂y2
, e3 = ∂x0

∂y3
, (4.35)

as holonomic base vectors. As e1 · ∇0y3 = ∂y3/∂y1 = 0 and e2 · ∇0y3 = ∂y3/∂y2 = 0 then

e1 × e2 = λe3, λ =
√

g

g33
. (4.36)

In the above development, gij = ei · ej is the metric tensor, associated with the generalized
coordinates (y1, y2, y3). It has the form

g =

g11 g12 0

g21 g22 0
0 0 g33


 , (4.37)
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and g = det(gαβ) is the determinant of the metric tensor. The inverse matrix, g−1, has
components gαβ given by the matrix

g−1 = 1

g


 g22g33 −g12g33 0

−g12g33 g11g33 0
0 0 (g11g22 − g12g21)


 . (4.38)

Note that gαβ = Gβα/g, where Gαβ = cofac(gαβ). In the derivation of (4.36) we note that

e1 × e2 · e3 = λg33 = det
(
∂xα

0

/
∂yj

) = √
g, (4.39)

and hence λ = √
g/g33.

Using the dual base vectors ωi = ∇0y
i , (1 � i � 3), we obtain

ω1 × ω2 = e3/
√

g, ω2 × ω3 = e1/
√

g, ω3 × ω1 = e2/
√

g,

e1 × e2 = √
gω3, e2 × e3 = √

gω1, e3 × e1 = √
gω2.

(4.40)

These relations allow one to express solutions of the Lie determining equations (4.4)–(4.8)
in either the contravariant vector field base {ei} or in terms of the covariant vector field
basis {ωi}.

4.2.2. Solutions of (4.4)–(4.7).

Proposition 4.5. The Lie determining equations (4.4)–(4.7) have solutions for B0, V
x0 , ρ0

and S̄(x0) that depend on the parameter δ4 = δ + 2α − β.

Case 1. δ4 �= 0

If δ4 �= 0, (4.4)–(4.7) have solutions of the form

B0 = δ4ρ0y1e2, V x0 = −δ4y1e1,

ρ0 = F(y3)√
g

|y1|−(1+δ2/δ4), S̄ = −2

(
δ1

δ4

)
ln |y1| + D(y2, y3),

(4.41)

where

δ1 = δ(1 − γ ) + γ (β − α), δ2 = 2α + 2δ + (n − 2)β, δ4 = δ + 2α − β. (4.42)

In (4.41), (y1, y2, y3) are the coordinates in x0 label space and ej = ∂x0/∂yj are the
corresponding holonomic base vectors referred to in (4.35) et seq. F(y3) and D(y2, y3) are
arbitrary functions of y2 and (y2, y3) respectively that arise as ‘integration constants’. Here
g = det(gij ) is the determinant of the metric tensor gij = ei · ej .

Case 2. δ4 = 0

If δ4 = 0, (4.4)–(4.7) have solutions

B0 = ρ0e2, V x0 = e1,

ρ0 = F(y3)√
g

exp(δ2y1), S̄ = 2δ1y1 + D(y2, y3).
(4.43)

The coordinates (y1, y2, y3) are different than those used in the case δ4 �= 0.

Proof. The proof of (4.41)–(4.43) is straightforward. One can check the solutions by
substitution in (4.4)–(4.7). �



FR and LP symmetries, and the Lagrangian map in MHD 561

5. MHD conservation laws

In this section we use the results of section 4, to derive conservation laws for MHD associated
with the variational symmetry (1.13) for the case, where α + 2δ + nβ = 0. These conservation
laws are derived using Noether’s theorem, coupled with the solutions of the Lie determining
equations (4.4)–(4.7) in Lagrange label space.

5.1. Conservation laws in x0 label space

Proposition 5.1. If α + 2δ + nβ = 0, the MHD system (2.1)–(2.6) with equation of state (1.7),
in the absence of gravitational forces, admits the variational symmetry (1.13) which leaves
the MHD action (2.15) invariant. The corresponding conservation law, by Noether’s theorem
(proposition 3.1) has the form

∂I 0

∂t
+

∂I j

∂x
j

0

= 0, (5.1)

where

I 0 = ρ0u
kV̂ xk

+ V tL0, (5.2)

I j = V̂ xk

[(
p +

B2

2µ

)
δks − BkBs

µ

]
Asj + V x

j

0 L0. (5.3)

In (5.1)–(5.3)

L0 = 1

2
ρ0|u|2 − Jp

γ − 1
− JB2

2µ
, (5.4)

is the Lagrangian density L0 in the MHD action principle (2.17) and J = det(∂xi/∂x
j

0 ) is
the Jacobian of the transformation between the Eulerian position of the fluid element x and
the Lagrangian labels x0. The Lie symmetry generators V̂ xk

and V x
j

0 depend on whether
δ4 = δ + 2α − β is non-zero or zero.

Case 1. δ4 �= 0

In this case

V̂ xk = βxk − αtuk + δ4y1
∂xk

∂y1
, V x

j

0 = −δ4y1
∂x

j

0

∂y1
, V t = αt. (5.5)

The associated solutions for B0, ρ0 and S̄ are given by (4.41) and (4.42).

Case 2. δ4 = 0

In this case

V̂ xk = βxk − αtuk − ∂xk(x0, t)

∂y1
, V x

j

0 = ∂x
j

0

∂y1
, V t = αt. (5.6)

The associated solutions for B0, ρ0 and S̄ are given by (4.43).

Proof. The proof is a straightforward consequence of the Lagrangian form of Noether’s
theorem (proposition 3.1) and the solution of the Lie determining equations (4.4)–(4.7) in
Lagrange label space given in proposition 4.5. �
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Comment

The conservation law (5.1) depends on the initial distributions for ρ0, B0, S̄ in Lagrange label
space as well as on the Lie symmetry generators in Lagrange label space. Below we show that
one can use {yj : 1 � j � 3} to replace the Lagrange labels {xj

0 : 1 � j � 3} to simplify the
form of the conservation law (5.1).

5.2. Conservation laws in (y1, y2, y3) label space

In order to transform the conservation law (5.1) into an equivalent conservation law in
y = (y1, y2, y3)

t Lagrange label space it is necessary to determine the nature of the
transformation between x0 label space and y label space, as outlined below.

Proposition 5.2. The determinant

D = det
(
∂xi

0

/
∂yj

) = √
g, where g = det(gαβ), (5.7)

is the determinant of the metric tensor gαβ = eα · eβ and the eα = ∂x0/∂yα are holonomic
base vectors in Lagrange label space. Furthermore, the determinants

J = det
(
∂xi

/
∂x

j

0

)
and J̃ = det

(
∂xi

/
∂yj

)
, (5.8)

are related by the equation

J̃ = J
√

g. (5.9)

Proof. The proof is straightforward and is omitted. �

Proposition 5.3. The conservation law (5.1) in x0 label space can be written as the
conservation law

∂I ′0

∂t
+

∂I ′j

∂yj

= 0, (5.10)

in y label space, where

I ′0 = √
gI 0 and I ′j = √

gĨ j = √
g

∂yj

∂xs
0

I s. (5.11)

Proof. The proof follows from the transformation of the vector field

I =
3∑

k=1

I kak =
3∑

j=1

Ĩ j ej , (5.12)

where a1 = (1, 0, 0)T , a2 = (0, 1, 0)T and a3 = (0, 0, 1)T are rectangular Cartesian base
vectors in x0 label space and by noting that ej = ∂x0/∂yj . �

Proposition 5.4. The conservation law (5.10) of proposition 5.3 has conserved density I ′0

and flux components I ′j of the form

I ′α = I ′α(t, ∂x/∂t, y, ∂xi/∂yj ), α = 0, 1, 2, 3. (5.13)

In other words, the flux components I ′α can be written in terms of the generalized Lagrange
labels y = y(x0), without explicit reference to x0. The detailed form of the I ′α depends on
whether δ4 = δ + 2α − β = 0 or δ4 �= 0. Furthermore, it is necessary that α + 2δ + nβ = 0
for the conservation law (5.10) to apply.
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Proof. Using propositions (5.1)–(5.3), we obtain

I ′0 = ρ̃0V̂
xk

uk + αtL̃0, (5.14)

I ′j = V̂ xk

[(
p +

B2

2µ

)
δmk − BmBk

µ

]
Ãmj + V yj L̃0, (5.15)

where

L̃0 = √
gL0 = 1

2
ρ̃0|xt |2 − p̃0J̃

1−γ

γ − 1
− B̂2

0

2µJ̃

∣∣∣∣ ∂x
∂y2

∣∣∣∣
2

, (5.16)

J̃ = det(∂xi/∂yj ), Ãmj = cofac(∂xm/∂yj ). (5.17)

The gas density ρ, pressure p and magnetic induction B are given by

ρ = ρ̃0

J̃
, p = p̃0J̃

−γ , B = B̂0

J̃

∂x
∂y2

. (5.18)

In (5.18)

B0 = B
j

0 aj = B̃k
0 ek, B̃k

0 = B̂0δ
k2

√
g

= B
j

0

∂yk

∂x
j

0

, (5.19)

defines B̂0. The detailed form of ρ̃0, p̃0, B̂0, V̂
xk

, V x
j

0 and V yj depend on whether δ4 = 0 or
δ4 �= 0, which are given below.

Case 1. δ4 �= 0

V̂ xk = βxk − αtuk + δ4y1
∂xk

∂y1
, V x

j

0 = −δ4y1
∂x

j

0

∂y1
, V yj = −δ4y1δ

j1,

ρ̃0 = ρ0
√

g = F(y3)|y1|−(1+δ2/δ4),

p̃0 = exp(S̄)ρ̃
γ

0 = |y1|−2δ1/δ4 exp[D(y2, y3)]ρ̃
γ

0 ,

B̂0 = δ4y1ρ̃0.

(5.20)

Case 2. δ4 = 0

V̂ xk = βxk − αtuk − ∂xk

∂y1
, V x

j

0 = ∂x
j

0

∂y1
, V yj = δj1,

ρ̃0 = ρ0
√

g = F(y3) exp(δ2y1),

p̃0 = exp(S̄)ρ̃
γ

0 = exp[2δ1y1 + D(y2, y3)]ρ̃
γ

0 , B̂0 = ρ̃0.

(5.21)

In the derivation of (5.15) for I ′j we used the result

√
g

∂yj

∂xs
0

Ams = √
g

∂yj

∂xs
0

(
J

∂xs
0

∂xm

)
= √

gJ
∂yj

∂xm
= Ãmj , (5.22)

(note J̃ = √
gJ ).

Inspection of (5.14)–(5.21) reveals that {I ′α : α = 0, 1, 2, 3} depend only on
(t, ∂x/∂t, y, ∂xi/∂yj ), and not explicitly on x0. This completes the proof. �

Remark 1. Note that V yj , ρ̃0, B̂0, p̃0 depend only on the Lagrange labels y.
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Remark 2. From (5.14) et seq one can show that

I ′0 = V̂ xk ∂L̃0

∂xk
t

+ V t L̃0, I ′j = V̂ xk ∂L̃0

∂x̃kj

+ V yj L̃0, (5.23)

where x̃kj = ∂xk/∂yj . One can verify that

X̃(a)L̃0 + (DtV
t + Dyj

V yj )L̃0 = (α + 2δ + nβ) L̃0. (5.24)

Equation (5.24) implies that the symmetry X(a) is a variational symmetry of the action if
α +2δ +nβ = 0 (see also (4.22)). I ′0 and I ′j in (5.23) are the conserved density and fluxes that
one obtains by the application of Noether’s theorem if one uses (y1, y2, y3) as the Lagrangian
labels in the action principle.

6. Gas dynamics

In this section we discuss the solution of the Lie determining equations for the symmetry X(a)

of (1.13) in Lagrange label space, and the form of the conservation laws that result if the
condition α + 2δ + nβ = 0 for a variational symmetry is satisfied.

In the pure fluid dynamical case, the Lie determining equations (4.4)–(4.7) reduce to the
equation system

∇0 · (ρ0V
x0) = δ2ρ0, Dt (V

x0) = 0, (6.1)

V x0 · ∇0S̄ = 2δ1, (6.2)

where

δ1 = δ(1 − γ ) + γ (β − α), δ2 = 2α + 2δ + (n − 2)β. (6.3)

Proposition 6.1. The Lie determining equations (6.1) and (6.2) for X for δ1 �= 0 and δ2 �= 0
have solutions

V x0 = e1 = ∂x0

∂y1
, ρ0 = 	(y2, y3)√

g
exp(δ2y1), S̄ = 2δ1y1 + D(y2, y3), (6.4)

where g = det(gij ), ei = ∂x0/∂yi, y1, y2 and y3 are the three independent functions of the
Lagrange labels x0 described in (4.35) et seq, and 	(y2, y3) and D(y2, y3) are arbitrary
functions of y2 and y3 respectively.

Proof. It is straightforward to verify that (6.4) provide a solution of (6.1) and (6.2). In (6.4)
V x0 = ∂x0/∂y1, with y2 and y3 fixed, can be regarded as the streamline equation for V x0 in
which y1 is the parameter along the streamline. Solutions (6.4) for V x0 , ρ0 and S̄ are similar
to solutions (4.43) of the MHD determining equations, except B0 = 0. �

6.1. Conservation laws

Proposition 6.2. In the case α + 2δ +nβ = 0, the Lagrangian conservation law (3.4) in (x0, t)

space has conserved density I 0 and fluxes I j given by

I 0 = ρ0u
kV̂ xk

+ αtL0, I j = pV̂ xk

Akj + V x
j

0 L0, (6.5)

where Akj = cofac(xkj ), xkj = ∂xk/∂x
j

0 , and

V̂ xk = βxk − αtuk − ∂xk

∂y1
, V x

j

0 = ∂x
j

0

∂y1
,

L0 = 1

2
ρ0|u|2 − p0J

1−γ

γ − 1
, J = det(xij ),

(6.6)
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define the symmetry generators V̂ xk

, V x
j

0 , Lagrangian L0 and the determinant J of the Euler–
Lagrange map.

The corresponding conservation law using (y, t) as independent variables from (5.14) and
(5.15) has conserved density I ′0 and fluxes I ′j given by

I ′0 = ρ̃0V̂
xk

uk + αtL̃0, I ′j = pV̂ xk

Ãkj + V yj L̃0, (6.7)

where V yj = δj1. Similarly, from (3.16)–(3.19) the Eulerian conserved density and fluxes are
given by

F 0 = ρukV̂ xk

+ αtL, F j = V̂ xk

(ρukuj + pδjk) −
(

αtuj +
∂xj

∂y1

)
L, (6.8)

where

L = 1

2
ρ|u|2 − p

γ − 1
, (6.9)

is the Eulerian Lagrangian density (2.16) with B = 0 and 	 = 0.

6.2. The projective symmetry X14

In this section we determine the conservation law associated with the projective symmetry X14

in gas dynamics with an adiabatic index γ = (n + 2)/n, where n is the number of Cartesian
space coordinates. The Eulerian form of the symmetry from (1.11) is

X14 = txα ∂

∂xα
+ (xi − uit)

∂

∂ui
− ntρ

∂

∂ρ
− (n + 2)tp

∂

∂p
. (6.10)

By converting the Eulerian symmetry (6.10) to its Lagrangian equivalent we obtain the
Lagrangian symmetry,

X14 = t2 ∂

∂t
+ txi ∂

∂xi
+ V x0 · ∇0, (6.11)

in (t, x, x0) Lagrange label space (see (3.34) et seq), and V x0 is a fluid relabelling symmetry
generator. In the present analysis we restrict our attention to the symmetry (6.11) in which
V x0 = 0.

Proposition 6.3. The projective symmetry (6.11) with V x0 = 0 is a divergence symmetry of
action (3.1), where

L0 = 1

2
ρ0|xt |2 − p0J

1−γ

γ − 1
(6.12)

is the Lagrangian density, γ = (n+2)/n, J = det
(
∂xi

/
∂x

j

0

)
, ρ0 = ρ0(x0), p0 = p0(x0), p =

p0J
−γ is the gas pressure and u = ∂x/∂t is the fluid velocity. Condition (3.9) for the symmetry

(6.11) to be a divergence symmetry of the action reduces to

X̃L0 + 2tL0 − ∂

∂t

(
1

2
ρ0|x|2

)
= 0, (6.13)

so that �0
0 = −ρ0|x|2/2,�

j

0 = 0 in (3.9). Equation (6.13) shows that X14 is a divergence
symmetry of the action and hence corresponds to a conservation law by Noether’s theorem.
This conservation law ∂I 0/∂t + ∂I j /∂x

j

0 = 0 has conserved density I 0 and flux I j given by

I 0 = t (xk − ukt)ρ0u
k + t2L0 − 1

2ρ0|x|2, I j = t (xk − ukt)pAkj , (6.14)

where Akj = cofac(xkj ) and xkj = ∂xk/∂x
j

0 .
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Proof. The canonical symmetry generator V̂ xk

, and the generators V xk

, V t , V xk
t , V xij in the

extended derivative symmetry operator X̃ of (3.10) are given by

V̂ xk = t (xk − ukt), V t = t2, V xk = txk,

V xk
t = xk − ukt, V xij = txij .

(6.15)

Evaluation of X̃L0 gives (6.13). The application of Noether’s theorem (proposition 3.1) with
B = 0 gives the conserved density I 0 and flux components I j in (6.14). This completes the
proof. �

Comment 1

The symmetry (6.11) is a divergence symmetry of the action because (3.9) is satisfied and
�α

0 �= 0.

Comment 2

The Eulerian form of the conservation equation, ∂F 0/∂t + ∂F j/∂xj = 0 follows from (3.14)
et seq, where

F 0 = t (x − ut) · ρu + t2L − 1
2ρ|x|2, (6.16)

F = t (x − ut) · (ρuu + pI) + u
(
t2L − 1

2ρ|x|2). (6.17)

In (6.17), F = (F 1, F 2, F 3) is the spatial flux vector and I is the unit dyadic.

Comment 3

Ibragimov (1985) (section 25.2) derives the Eulerian conservation law F0,t +∇·F = 0, where F0

and F are given by (6.16) and (6.17), by applying the canonical Eulerian symmetry operator X̂14

twice to the Eulerian energy density and energy flux (i.e. to the Eulerian energy conservation
equation). The essence of this approach is that a given Noether current Cα satisfying the
conservation law, DαCα = 0, is mapped by the canonical Lie symmetry operator X̂ onto the
conservation law DαFα = 0, where Fα = X̂Cα . This result is a consequence of the result
[X̂,Dα] = 0 for the commutator of X̂ with the total derivative operator Dα . In fact Ibragimov
(1985) obtains two conservation laws associated with X̂14. It is not clear to the present authors
how his first conservation law obtained by applying X̂14 once to the energy conservation law
can be obtained by Noether’s theorem, using the present approach.

The conservation law for the projective symmetries X14 for 2D MHD with an ignorable
Cartesian coordinate z is discussed in appendix C.

7. Lie algebraic aspects

In this section we identify the Lie point symmetries of the Galilean group, and the projective
symmetry X14 with the Lagrangian symmetries with V x0 = 0. Our aim is to determine the
Lie brackets for the fluid relabelling symmetries for both gas dynamics (section 7.1) and
MHD (section 7.2) and their relation to the generalized symmetry X(a) of (1.13) associated
with the constant γ gas. In order for the Lie brackets to make sense, the two symmetry
operators in the bracket [X̂1, X̂2], namely X̂1 and X̂2 must correspond to the same differential
equation system in Lagrange label space (i.e. the Lagrangian momentum equations (2.19) or
the equivalent system of coupled nonlinear wave equations (A.1) for xi(x0, t)). This implies
that ρ0(x0), S(x0) and B0(x0) for the two symmetries are the same.
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7.1. Gas dynamics

In this section we delineate the nature of the interaction between the Eulerian Lie point
symmetries (1.1)–(1.11) in the case of pure gas dynamics with the fluid relabelling symmetries
(e.g. Padhye and Morrison, (1996a, 1996b), Padhye (1998), Salmon (1982), Webb et al
(2005b)). It turns out that the Lie symmetries (1.8)–(1.11) associated with an adiabatic
equation of state with a constant adiabatic index γ have non-zero commutators with the fluid
relabelling symmetries, but the commutators of the ten-parameter Galilean group have zero
commutators with the fluid relabelling symmetries. This comes about because the adiabatic
symmetries (1.8)–(1.11) depend on the equation of state and gas entropy S = S(x0), and the
entropy in turn depends on the Lagrange labels x0. On the other hand, the Galilean subgroup
symmetries {Xi : 1 � i � 10} (with V x0 = 0) do not depend on the Lagrange labels x0, and
have zero commutators with the fluid relabelling symmetries.

7.1.1. The fluid relabelling sub-algebra. By searching for Lie symmetries of the form

x ′i = xi, t ′ = t, x ′s
0 = xs

0 + εV xs
0 (x0), (7.1)

which leave the action invariant, it was shown in section 3.3 that the symmetries must satisfy
the Lie determining equations in x0 label space of the form (see also Padhye (1998), Webb
et al (2005b))

∇0 · (ρ0V
x0) = 0, V x0 · ∇0S = 0. (7.2)

Equations (7.2) arise from the Lie invariance condition (3.9) for the gas dynamic equations
for the case �α

0 = 0, corresponding to Lie transformations in which V x = 0 and V t = 0, but
V x0 �= 0. Equations (7.2) have solutions of the form

V x0 = ∇0S × ∇0�

ρ0
≡ ∇0 × (S∇0�)

ρ0
, (7.3)

and are known as the fluid relabelling symmetries (e.g. Padhye and Morrison (1996a, 1996b),
Padhye (1998), Salmon (1982), Webb et al (2005b)). Here �(x0) is an arbitrary, differentiable
function of x0 (note also that S = S(x0)). This class of symmetries can be related to
Ertel’s theorem (i.e. the conservation of potential vorticity ∇ × u · ∇S/ρ following the flow),
via Noether’s second theorem (e.g Padhye (1998)). The canonical Lie symmetry generator
V̂ xk(x0,t) associated with the symmetries (7.1) and (7.2) is given by the formula

V̂ x = V x − (V tDt + V x0 · ∇0)x ≡ −V x0 · ∇0x. (7.4)

From (7.3) and (7.4) we obtain

V̂ x = −∇S × ∇�

ρ
≡ −∇ × (S∇�)

ρ
, (7.5)

for the canonical symmetry operator corresponding to the relabelling symmetries (7.3) and
(7.4). The derivation of (7.5) depends on the identity

εsabxisxmaxnb = εimnJ, (7.6)

where xij = ∂xi/∂x
j

0 and J = det(xij ).
To determine the commutators of the fluid relabelling symmetry characteristic of the

independent functions �1(x0) and �2(x0) we use the result

[X̂(η̂1), X̂(η̂2)] = X̂(η̂3), η̂k
3 = X̂(η̂1)η̂

k
2 − X̂(η̂2)η̂

k
1, (7.7)

for the commutator of two canonical Lie symmetries with generators V̂ xk

1 ≡ η̂k
1 and V̂ xk

2 ≡ η̂k
2

(e.g. Ibragimov (1985)).
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Proposition 7.1. The commutator of two fluid relabelling symmetries with canonical
generators η̂j = −∇ × (S∇�j)/ρ, j = 1, 2, is given by

[X̂(r)(�1), X̂(r)(�2)] = X̂(r)(�3), (7.8)

where we use the notation X̂(r)(�j ) ≡ X̂(η̂j ) to denote the relabelling symmetry associated
with �j and

�3 = ∇�1 × ∇�2 · ∇S

ρ
≡ ∇0�1 × ∇0�2 · ∇0S

ρ0
= 1

ρ0

∂(�1,�2, S)

∂(x0, y0, z0)
. (7.9)

The symmetry associated with �3 has generator V̂ x(�3) = −∇ × (S∇�3)/ρ. The symmetry
generator V x0(�3) is given by (7.3), but with � replaced by �3, and hence is also a solution
of the Lie determining equations (7.2).

Proof. The proof follows directly from (7.7). �

Comment 1

The fluid relabelling symmetries form an infinite-dimensional Lie algebra, in which the
commutator of two symmetries associated with �1 and �2 yields a symmetry of the same
type associated with the function �3(x0) given by (7.9). This result for the commutator of two
fluid relabelling symmetries was also noted in Webb et al (2005b). Note that �3 �= 0 provided
�1,�2 and S are independent functions.

Comment 2

The Jacobi identity for the family of fluid relabelling symmetry operators is satisfied. The
Jacobi identity follows by noting that

[X1, X2]f = X1(X2f ) − X2(X1f ), (7.10)

defines the action of the Lie bracket on a function f (see e.g. Olver (1993), chapter 1,
proposition 1.32). A direct verification of the Jacobi identity for the bracket (7.8) is given in
appendix D.

7.1.2. Other commutators. The symmetry X(a) in (1.13) only applies if the entropy
distribution S(x0), density ρ0(x0) and symmetry generator V x0 satisfy (6.1) and (6.2), and
V̂ x has the form (6.6). In the following analysis we assume that these conditions are satisfied.

It is straightforward to verify that

[X̂j , X̂(r)(�)] = 0, 1 � j � 10. (7.11)

In other words, the Galilean subgroup described by (1.1)–(1.5) or (1.12) has zero commutators
with the fluid relabelling symmetries. This is because the generators of the Galilean group
may be described by transformations in Lagrange label space of the form (3.2) in which there
is no change in the Lagrange labels, i.e. V x0 = 0.

Proposition 7.2. The commutator of the adiabatic symmetry (1.13),

X̂(a) = αX̂11 + βX̂12 + δX̂13, (7.12)

with the canonical fluid relabelling symmetry,

X̂(r)(�) = −∇ × (S∇�)

ρ
· ∇ + · · · , (7.13)

is given by

[X̂(a), X̂(r)(�)] = X̂(r)(�a), (7.14)
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where

�a = −δ2� + V x0
a · ∇0� ≡ −δ2� +

∂�

∂y1
, (7.15)

and the entropy S(x0) and density ρ0 have the form (6.4) required for the ‘adiabatic’
symmetry (1.13). Thus, the commutator of the adiabatic symmetry X̂(a) with the fluid
relabelling symmetry X̂(r)(�) gives rise to a further relabelling symmetry X̂(r)(�a), where
�a = −δ2� + V x0

a · ∇0� and V x0
a = ∂x0/∂y1 describes transformations associated with X(a)

in x0 label space.

Proof. To prove (7.13), we first note that

∇0S̄ = 2δ1ω
1 + D2(y2, y3)ω

2 + D3(y2, y3)ω
3, (7.16)

where ωj = ∇0yj are the covariant base vectors introduced following (4.39) and Dj ≡ ∂D/∂yj

(j = 2, 3). The canonical symmetry generator V̂ x
(r) for the relabelling symmetry can be written

in the form

V̂ x
(r) = −V x0 · ∇0x = −V

ys

(r)

∂x
∂ys

, (7.17)

where

V
ys

(r)(y) = (∇̃S × ∇̃�)s

ρ̃0
, ∇̃j = ∂

∂yj

,

ρ̃0 = √
gρ0 = 	(y2, y3) exp(δ2y1).

(7.18)

From (7.16)–(7.18), we obtain

V̂ xk

(r) = F s(y)
∂xk

∂ys

,

F(y) = − 1

ρ̃0
(D2�3 − D3�2,D3�1 − 2δ1�3, 2δ1�2 − D2�3)

T .

(7.19)

Similarly,

V̂ xk

(a) = V xk − (
V tDt + V ys Dys

)
xk ≡ βxk − αtuk − ∂xk

∂y1
. (7.20)

Using η̂1 = V̂ x
(a) and η̂2 = V̂ x

(r)(�) in (7.7) now gives (7.14) for the commutator

[X̂(a), X̂(r)(�)]. This completes the proof. �

7.2. MHD

In this section we investigate the nature of the fluid relabelling symmetries and the symmetries
associated with the symmetry X(a) of (1.13).

7.2.1. The MHD fluid relabelling sub-algebra. The MHD fluid relabelling symmetries
are infinitesimal Lie transformations of the form x ′i = xi, t ′ = t, x ′i

0 = xi
0 + εV xi

0 , which
leave the MHD action invariant. This class of symmetries has Lie generators V x0 and the
related Lagrange space variables ρ0(x0), S̄(x0), and B0(x0) satisfying the Lie determining
equations (3.24), namely,

∇0 · (ρ0V
x0) = 0, V x0 · ∇0S̄ = 0, Dt(V

x0) = 0,

∇0 × (V x0 × B0) = 0, ∇0 · B0 = 0.
(7.21)
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The solution of the Lie determining equations (7.21) depends on whether (i) V x0 × B0 =
∇0ψ �= 0, or (ii) V x0 ‖ B0. There is also a simplification of the solution of the equations if (iii)
the gas is barotropic, i.e. the equation of state does not depend on the entropy and ε = ε(ρ).
The solution of (7.21) for these cases is discussed below.

Case 1. V x0 × B0 = ∇0ψ

In this case, (7.21) has solutions

V x0 = e1, B0 = ρ0e2, ρ0 = 1√
g

, S = S(χ,ψ), (7.22)

where

e1 = ∂x0

∂φ
, e2 = ∂x0

∂χ
, e3 = ∂x0

∂ψ
, (7.23)

g = det(gij ), gij = ei · ej , (7.24)

(e.g. Webb et al (2005b)). Solutions (7.22)–(7.24) are obtained using the same ideas used to
solve Lie determining equations in section 4.2. In the present analysis we use the notation
(φ, χ,ψ) ≡ (y1, y2, y3) to denote the potentials in x0 label space characterizing the solutions.
Note that the vector fields,

X1 = V x0 · ∇0 ≡ ∂

∂φ
and X2 = B0

ρ0
· ∇0 ≡ ∂

∂χ
, (7.25)

satisfy the Abelian Lie algebra [X1, X2] = 0. The geometrical formalism of section 4.2.1
also applies in the present case. For example ω1 = ∇0φ,ω2 = ∇0χ and ω3 = ∇0ψ are the
covariant dual basis vectors corresponding to the contravariant base vectors {ej : j = 1, 2, 3}
satisfying (4.40).

Case 2. V x0 ‖ B0

In this case, (7.21) has solutions for V x0 and B0 of the form

V x0 = −ζ(x0)

ρ0
B0 = −∇0 × (�∇0S)

ρ0
,

B0 = ∇0� × ∇0S

ζ
≡ ∇0	 × ∇0S,

(7.26)

where ζ(x0),	(S, ζ ) and �(S, ζ ) satisfy the equation

�(S, ζ ) =
∫ ζ

ζ ′ ∂	(S, ζ ′)
∂ζ ′ dζ ′. (7.27)

Comment

The derivation of (7.26) and (7.27) follows by noting that ∇0 · (ρ0V
x0) = 0, V x0 ·∇0S̄ = 0 and

∇0 · B0 = 0 require B0 · ∇0ζ = 0, B0 · ∇0S̄ = 0 and ∇0 · B0 = 0. The equations B0 · ∇0S̄ = 0
and ∇0 · B0 = 0 are satisfied by B0 = ∇0	 × ∇0S̄. The equation B0 · ∇0ζ = 0 reduces to
the Jacobian equation ∂(	, S, ζ )/∂(x0, y0, z0) = 0, from which it follows that 	 = 	(S, ζ ).
The function �(S, ζ ) in (7.27) allows the solutions for V x0 and B0 to be expressed in the form
(7.26).

Case 3. Barotropic MHD

For barotropic MHD, there is no constraint associated with the entropy, since the equation
of state ε = ε(ρ) does not involve the entropy. This is most easily seen from condition
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(3.9) (see Webb et al (2005b) equation (5.83)). Hence the entropy in this case is an arbitrary
function of x0. There are two cases to be considered according as V x0 ‖ B0 or not. For the
Case V x0 ‖ B0 the Lie determining equations admit solutions

V x0 = −ψ(x0)
B0

ρ0
and B0 = ∇0	 × ∇0ψ, (7.28)

where ψ(x0) and 	(x0) are arbitrary functions of x0. We will not consider this case further in
the present paper.

Proposition 7.3. The commutator of two non-field aligned, fluid relabelling symmetries of the
form (7.21) in which V x0 are not parallel to B0, with Lie generators

V
x0
j = ∇0χj × ∇0ψj

ρ0
, V̂ x

j = −V
x0
j · ∇0x, j = 1, 2, (7.29)

with the same ρ0(x0), S(x0) and B0(x0) distributions have zero commutator:[
X̂

(
V̂ x

1

)
, X̂

(
V̂ x

2

)] = X̂
(
V̂ x

3

)
. (7.30)

In other words, V̂ x
3 = 0. In order for the two symmetries (7.29) to correspond to the same

ρ0(x0), S(x0) and B0(x0) requires χ1 = χ2, ψ2 = f (ψ1, χ1) for some differentiable function
f , and

V
x0

2 = fψ1(ψ1, χ1)V
x0

1 . (7.31)

Proof. From (7.22)–(7.24), B0 = ρ0e2 and ρ0(x0) for the two symmetries are the same if
χ1 = χ2 and ρ0(x0) = 1/

√
g for the two symmetries. The entropy S(x0) = S1(χ1, ψ1) =

S2(χ2, ψ2) and χ1 = χ2 requires ψ2 = f (ψ1, χ1). These conditions then imply V
x0
j for

j = 1, 2 and are related by (7.31).
Using (7.7), V̂ x

3 in (7.30) may be expressed in the form

V̂ x
3 = −V

x0
3 · ∇0x, V

x0
3 = −∇0 × (	∇0S)

ρ0
,

	 = χ1,S̄χ2,S̄

∇0ψ1 × ∇0ψ2 · ∇0S̄

ρ0
,

(7.32)

where χj,S̄ = ∂χj/∂S̄ (j = 1, 2). Using the fact that we can express S̄ in terms of either
(χ1, ψ1) or (χ2, ψ2), we find

	 = χ2,S̄

∇0χ1 × ∇0ψ1 · ∇0ψ2

ρ0
≡ χ2,S̄

1

ρ0

∂(χ1, ψ1, ψ2)

∂(x0.y0, z0)
≡ 0. (7.33)

In (7.33), 	 ≡ 0 because ψ2, χ1 and ψ1 are not independent functions (i.e. ψ2 = f (χ1, ψ1) for
some f ), for the common entropy distribution used for the symmetries. Hence, V x0

3 = V̂ x
3 = 0.

This completes the proof. �

Proposition 7.4. Two field-aligned (V x0 ‖ B0) fluid relabelling symmetries, with Lie
generators:

V
x0
j = −∇0 × (�j∇0S)

ρ0
, j = 1, 2, (7.34)

with the same ρ0(x0), S(x0) and B0 can only differ at most in the functions ζj (x0) , i.e.,
V

x0
j = −ζj (x0)B0/ρ0, (j = 1, 2). Using the notation �j = �(S, ζj (x0)) (j = 1, 2) the

symmetries (7.34) satisfy commutation relations (7.30), where

V̂ x
j = −V

x0
j · ∇0x ≡ ∇ × (�j∇S)

ρ
, j = 1, 2, 3, (7.35)
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and

�3 = ∇0�1 × ∇0�2 · ∇0S

ρ0
≡ ∇�1 × ∇�2 · ∇S

ρ
. (7.36)

Remark 1. The commutation relations are similar to the pure fluid dynamical case described
in (7.8) et seq.

Remark 2. Note that �3 �= 0 if ∂(S,�1,�2)/∂(x0, y0, z0) �= 0.

Proposition 7.5. The commutator of a non-field aligned MHD fluid relabelling symmetry,
with generator

V̂ x
1 = −V

x0
1 · ∇0x, V

x0
1 = ∇0χ × ∇0ψ

ρ0
, (7.37)

where the entropy S = S(χ,ψ) and ρ0 = 1/
√

g (cf (7.22) et seq), and a field aligned MHD
fluid relabelling symmetry, with canonical generator,

V̂ x
2 = −V

x0
2 · ∇0x, V

x0
2 = ∇0S × ∇0�

ρ0
, (7.38)

have commutators of the form (7.30) with

V̂ x
3 = −V

x0
3 · ∇0x, V

x0
3 = ∇0S × ∇0	

ρ0
,

	 = ∂χ

∂S

∇0ψ × ∇0� · ∇0S

ρ0
≡ ∇0ψ × ∇0� · ∇0χ

ρ0
,

(7.39)

and ∂χ/∂S ≡ ∂χ(S,ψ)/∂S.

Remark 1. The canonical symmetry generators V̂ x
j (j = 1, 2, 3) can be written in the form

V̂ x
1 = −∇ × (χ∇ψ)

ρ
, V̂ x

2 = −∇ × (S∇�)

ρ
, V̂ x

3 = −∇ × (S∇	)

ρ
. (7.40)

Thus, V̂ x
3 has the form of a pure fluid relabelling symmetry or a field-aligned symmetry with

potential 	.

Remark 2. If ∂(�,ψ, χ)/∂(x0, y0, z0) = 0 then 	 = 0. This occurs if � = �(χ,ψ).

An example of the commutator of a fluid relabelling symmetry X̂(r) for which B0 �= 0,
with an adiabatic symmetry X̂(a) with the same ρ0(x0), B0(x0) and S(x0) is given below.

Proposition 7.6. The fluid relabeling symmetry (7.22) with

V
x0
(r) = e1, B0 = ρ0e2, ρ0 = 1√

g
,

S(x0) = 2
δ1

δ2
ln(y3) + D(y2),

(7.41)

has zero commutator

[X̂(a), X̂(r)] = 0, (7.42)

with the adiabatic symmetry X̂(a) with symmetry generators

V x
(a) = βx, V t

(a) = αt, V
x0
(a) = δ2y3e3, (7.43)

where both symmetries have the same ρ0(x0), B0(x0) and S(x0) distributions given in (7.41).
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Proof. The main problem is to determine ρ0, B0 and S distributions that are compatible
with both symmetries. Using solution (4.43) for δ4 = δ + 2α − β = 0, with potentials
y ′

1 = ln(y3)/δ2, y
′
2 = y2, y

′
3 = −y3, F (y ′

3) = 1 results in the base vectors e′
1 = δ2y3e3, e′

2 = e2

and e′
3 = −e1 and g′ = θ2g, where θ = exp(−δ2y3)/δ2 leads to the distributions in (7.41).

One can check directly that V
x0
(a) in (7.41) satisfies the Lie determining equations (4.4)–(4.7)

for the case δ4 = 0. Note that

V̂ x
(a) = βx − αtu − δ2y3

∂x
∂y3

, V̂ x
(r) = − ∂x

∂y1
, (7.44)

are the canonical symmetry generators involved. �

This completes our discussion of the Lie symmetries X(a) and X(r) for the MHD case.
More complicated examples could be constructed.

8. Summary and concluding remarks

In this paper we have explored the role of the Lagrangian map for Lie symmetries in MHD
and gas dynamics. The analysis made use of the Lagrangian action principle for MHD and
fluid dynamics developed by Newcomb (1962) based on the Lagrangian map, in which the
Eulerian position coordinate of the fluid element, x = x(x0, t) is regarded as a function of the
Lagrangian fluid labels x0 and time t. The Lagrangian map is the solution of the differential
equation dx/dt = u(x, t), where x = x0 at time t = 0.

After establishing the basic Lagrangian action and variational principle for MHD
(section 2), the Lagrangian and Eulerian conservation laws associated with a given variational
or divergence symmetry of the action (Noether’s theorem) were obtained (section 3). This
formulation of Noether’s theorem involved infinitesimal Lie transformations of the form

x ′i = xi + εV xi

, t ′ = t + εV t , x ′i
0 = xi

0 + εV xi
0 , (8.1)

that leave the action invariant, where x = x(x0, t) is given by the Lagrange map. Central to the
analysis is the Lie invariance condition (3.9) for the symmetry to be a variational or divergence
symmetry of the action. If condition (3.9) is satisfied then the associated conservation law
follows from Noether’s theorem. The fluid relabelling symmetries in this analysis correspond
to Lie transformations of the form (8.1) in which x and t are fixed, but transformations in the
fluid labels x0 are allowed (i.e. V t = V x = 0 but V x0 can be non-zero). The Lie equations for
the fluid relabelling symmetries (3.24) then follow from condition (3.9) that the transformation
leaves the action invariant. These equations are analogous to steady MHD equations in which
V x0 plays the role of the fluid velocity. These equations are the analogues of: the steady mass
continuity equation, the entropy advection equation, and the steady version of Faraday’s law
and Gauss’s equation ∇ · B0 = 0. This is the approach to fluid relabelling symmetries used
by Padhye and Morrison (1996a, 1996b), Padhye (1998) and Webb et al (2005b).

By using the Lie extension formulae for the transformation of the derivatives of the
dependent variables (i.e. ∂x/∂t and ∂xi/∂x

j

0 ) coupled with the transformation formulae of the
physical variables from the Lagrange label point x0 at time t = 0 to the Eulerian position x at
time t, allows one to transform a given Lie symmetry from its Eulerian form to its equivalent
Lagrange label space form. Applying this idea to the Eulerian Lie point symmetries of the
Galilei group (1.1)–(1.5), one obtains Lagrangian symmetry operators, that have the same
infinitesimal generators V t and V x as the Eulerian symmetries, but solutions of the Lie
determining equations allow V x0 �= 0 that satisfy the fluid relabelling equations (3.24). In
other words, there is an infinite class of symmetries in Lagrange label space that map onto the
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given Eulerian Lie point symmetry of the Galilei group. Similarly, the projective symmetry
X14 for gas dynamics, with an adiabatic index γ = (n + 2)/n of (1.11), has symmetries with
the same V x and V t as the Eulerian symmetry operator, but with V x0 corresponding to a fluid
relabelling symmetry.

By converting the scaling symmetry X(a) of (1.13), associated with a constant adiabatic
index gas, to its Lagrangian form, one finds that the infinitesimal symmetry generator V x0

in (8.1) must now satisfy a modified form of the fluid relabelling determining equations
with non-zero source terms (equations (4.4)–(4.7)). Analysis of (4.4)–(4.7) shows that X(a)

corresponds to a variational symmetry of the action if α + 2δ + nβ = 0, which is condition
(1.14). The solution of the Lie equations (4.4)–(4.7) was carried out by demonstrating that the
vector fields X1 = b0 ·∇0, where b0 = B0/ρ0 and X2 = V x0 ·∇0, form a two-dimensional Lie
algebra, with commutation relation [X1, X2] = δ4X1, where δ4 = δ+2α−β. A representation
for the Lie algebra, coupled with Frobenius’s integrability theorem leads to solutions of the
Lie determining equations (4.4)–(4.7) depending on the parameters. The solutions were used
in section 5 to determine both Lagrangian and Eulerian MHD conservation laws in the case
α + 2δ +nβ = 0. A similar analysis in section 6 for the symmetry X(a) gives the corresponding
conservation laws for the gas dynamical model. The conservation laws associated with the
symmetry X(a) only apply for specific initial data for the physical variables. We also use
Noether’s theorem in section 6 to derive the conservation law associated with the projective
symmetry X14 for an ideal gas with an adiabatic index γ = (n + 2)/n, where n is the number
of Cartesian space dimensions. The conservation law for the projective symmetry for 2D ideal
MHD, with an ignorable coordinate z, with a transverse magnetic field B = (0, 0, B)t (see
also Fuchs and Richter (1987)), is discussed in appendix C.

In section 7, we investigated the Lie algebraic commutation relations for the fluid
relabelling symmetries and the symmetries X(a) of (1.13). Both the fluid relabelling
symmetries and X(a) are determined in part by the equation of state of the gas (i.e. the
entropy distribution). As a consequence the Lagrangian, canonical symmetry operators for
these symmetries have non-trivial Lie algebraic commutation relations.

We have restricted our attention to symmetries in Lagrange label space that are essentially
Lie point symmetries (i.e. they do not depend on the derivatives of x(x0, t)). The role of non-
point symmetries in Lagrange label space is not clear from the present analysis, and requires
further work. It is of interest to investigate the role of symmetries in Lagrangian mean-wave
theories of turbulence, as developed for example by Holm (1999), and on the Lagrangian
averaged Euler Poincaré equations (LAEP) equations. The fluid relabelling symmetries can
presumably be investigated by using Cartan’s method of moving frames, and the algebra
of exterior differential forms (e.g. Harrison and Estabrook (1971), Olver and Pohjanpelto
(2005)), and the multi-symplectic approach (e.g Bridges et al (2005) and Hydon (2005)). The
fluid relabelling symmetries are presumably related to recent work by Gibbon et al (2006)
on vorticity dynamics in incompressible 3D fluid dynamics, where the vortex dynamics are
described using a quaternion representation for the Lagrangian advection and stretching of the
vortex tubes.
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Appendix A

In this appendix we reduce the Lagrangian momentum equation (2.19) to a system of three
coupled nonlinear MHD wave equations for xi(x0, t) (1 � i � 3). We also discuss the
characteristic manifold of the system of coupled PDEs for the xi(x0, t).

Using the Lagrangian map equations (2.7)–(2.9) for ρ and B and noting that p = p(ρ, S),
(2.19) reduces the coupled wave system:

A
iαβ

j x
j

αβ + Ri = 0, (A.1)

where x
j

αβ = ∂2xj/∂xα
0 ∂x

β

0 (α, β = 0, 1, 2, 3, 1 � j � 3, i.e. Greek indices assume the
values 0, 1, 2, 3 and Latin indices assume the values 1, 2, 3) and (t, x, y, z) ≡ (x0, x1, x2, x3).
In (A.1),

A
iαβ

j = δij [δα0δβ0 − δαpδβqbsbkypkyqs]

+ δαpδβq[−(a2 + b2)yqiypj + bjbsyqiyps + bsbiypjyqs], (A.2)

Ri = Br

µρ0

∂Bs
0

∂x
p

0

(ypixrs − xisypr) +
Aij

ρ0

(
a2

J
+

∂p

∂S

∂S

∂x
j

0

)
+

∂	

∂xi
. (A.3)

Here b = B/
√

µρ is the local Alfvén velocity and a = (∂p/∂ρ)1/2 is the adiabatic sound
speed of the gas. The characteristic manifolds of the partial differential equation system (A.1)
are defined as manifolds φ(x, t) = const on which the Cauchy, initial value problem does not
have a unique solution. The characteristic manifolds of (A.1) are given by the solutions of the
determinantal equation:

det(Ã) = 0, where Ãi
j = A

iαβ

j φ,αφ,β (A.4)

and φ,α ≡ ∂φ/∂xα
0 . The matrix Ã can be written in the form

Ãi
j = [ω′2 − (b · k)2]δij − (a2 + b2)kikj + (b · bk)(bikj + bjki), (A.5)

where

ω′ = −∂φ(x0, t)

∂t
≡ −(φt + u · ∇φ), k = ∇φ, (A.6)

(φt denotes the time derivative of φ keeping x constant) define the wave frequency ω′ in the
fluid frame and wave number k. The determinant of Ã is

det(Ã) = [ω′2 − (b · k)2][ω′4 − (a2 + b2)ω′2k2 + a2k2(b · k)2] = 0, (A.7)

(cf Webb et al (2005a)). The first factor in (A.7) corresponds to the Alfvén wave modes, and
the second factor in square brackets corresponds to the fast and slow magnetosonic modes
respectively.

Appendix B

In this Appendix we indicate the origin of the identity (3.13). In the derivation of Noether’s
first theorem (e.g. Bluman and Kumei (1989)) for the case in which action (3.1) is invariant
under the canonical Lie transformation:

x ′k = xk + εV̂ xk

, t ′ = t, x
′j
0 = x

j

0 , (B.1)

where

V̂ xk = V xk − (
V tDt + V x

j

0 D
x

j

0

)
xk(x0, t), (B.2)
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the variation of the action is given by


A = lim
ε→0

A[x + εV̂ x] − A[x]

ε
=

∫
R

d3x0 dtX̂L0, (B.3)

where X̂ is the canonical Lie symmetry operator (3.12). However, by using integration by
parts one can also obtain (e.g. Bluman and Kumei (1989))


A =
∫
R

d3x0 dt
[
V̂ xk

Exk (L0) + DαWα
]
, (B.4)

where Exk (L0) ≡ δA/δxk is the Euler operator for xk and

Wα = V̂ xk ∂L0

∂xk
α

(α = 0, 1, 2, 3) (B.5)

are surface vector terms. Since the integration region R is arbitrary in (B.3) and (B.4) we
deduce

X̂L0 = V̂ xk

Exk (L0) + DαWα. (B.6)

Adding Dα

(
L0V α + �α

0

)
to both sides of (B.6) and noting X̃ = X̂ + V αDα (see (3.11)), we

obtain identity (3.13). The above argument is essentially a condensed form of that given
by Bluman and Kumei (1989) in a more general proof of Noether’s theorem. In the above
analysis we assumed that L0 depended at most on first order derivatives of the dependent
variables xk(x0, t). Bluman and Kumei consider the more general case where L0 can depend
on derivatives of any order of the dependent variables.

One can verify (3.13) directly by noting that

Dα(Wα + V αL0) ≡ Dα

(
V̂ xk ∂L0

∂xk
α

+ V αL0

)

= L0DαV α + V αDαL0 + V̂ xk

[
Dα

(
∂L0

∂xk
α

)
− ∂L0

∂xk

]

+ V̂ xk ∂L0

∂xk
+ Dα

(
V̂ xk )∂L0

∂xk
α

= L0DαV α + V αDαL0 − V̂ xk

Exk (L0) + X̂L0.

(B.7)

However, X̃ = X̂ + V αDα from (3.11). Hence (B.7) reduces to

Dα(Wα + V αL0) = X̃L0 + L0DαV α − V̂ xk

Exk (L0), (B.8)

which is equivalent to (3.13).

Appendix C

In this appendix we consider 2D MHD, with an ignorable coordinate z in two Cartesian
space dimensions, in which the magnetic field B = (0, 0, B)t lies along the z axis, and
B = B(x, y, t), and the adiabatic index of the gas is taken as γ = 2. The Lie symmetries and
Lie algebra of the MHD equations in this case were investigated by Fuchs and Richter (1987).
In this appendix we consider the conservation law associated with the projective symmetry,
X14, which has the form

X14 = txµ ∂

∂xµ
+ (xi − uit)

∂

∂ui
− 2tρ

∂

∂ρ
− 4tp

∂

∂p
− 2tB

∂

∂B
. (C.1)
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Note that xij ≡ ∂xi/∂x
j

0 in the requirement that B = (0, 0, B)t , and the frozen in field theorem
(2.9) implies that x13 = x31 = x23 = x32 = 0 and x33 = 1. The Lagrangian densities L and
L0 are given by

L0 = 1

2
ρ0|xt |2 −

(
p0 +

B2
0

2µ

)
1

J
, L = L0

J
= 1

2
ρ|u|2 −

(
p +

B2

2µ

)
. (C.2)

Note in (C.2) that B = B0/J and p = p0/J
2, where J = det(xij ).

Condition (3.9) for the symmetry to be a divergence symmetry of the action, for the case
V x0 = 0 reduces to (6.13), which is of the same form as that satisfied by X̃14 in the gas
dynamical case. From (3.4)–(3.7) it follows that the density I 0 and flux components {I j } in
the Lagrangian conservation law (3.4) are given by

I 0 = t (x − ut) · ρ0u + t2L0 − 1

2
ρ0|x|2, (C.3)

I j = t (xk − ukt)

[(
p +

B2

2µ

)
Akj − B2

µ
δksA3j

]
, (C.4)

where Akj = cofac(xkj . Using (3.16) et seq, the corresponding Eulerian conservation law has
conserved density F 0 and flux F given by

F0 = t (x − ut) · ρu + t2L − 1

2
ρ|x|2, (C.5)

F = t (x − ut) ·
[
ρuu +

(
p +

B2

2µ
I
)

− BB
µ

]
+ u

(
t2L − 1

2
ρ|x|2

)
. (C.6)

For completeness, we note that Fuchs and Richter (1987) obtained conservation laws
associated with the projective symmetry (C.1) by using the method of Ibragimov (1985)
alluded to in (6.17) et seq.

Appendix D

In this appendix we discuss the Jacobi identity,

[[Xa,Xb], Xc] + [[Xb,Xc], Xa] + [[Xc,Xa], Xb] = 0, (D.1)

for vector fields {Xa,Xb,Xc} for the fluid relabelling symmetries described by (7.1)–(7.9).
The Jacobi identity is easily proved by using the Lie bracket definition (7.10) to expand the
left-hand side of (D.1) as a sum of operators of the form XaXbXc and collecting like terms.
However, it is also interesting to show the detailed dependence of the Jacobi identity on the
functions �a,�b and �c by using (7.8) and (7.9). Using the notation Xabc = [[Xa,Xb], Xc],
the Jacobi identity (D.1) is equivalent to

Sabc = Xabc + Xbca + Xcab ≡ − (
V

x0
abc + V

x0
bca + V

x0
cab

) · ∇0x = 0, (D.2)

where

V
x0
abc = ∇0S × ∇0�abc

ρ0
, �abc = ∇0�ab × ∇0�c ·∇0S

ρ0
,

�ab = ∇0�a × ∇0�b · ∇0S

ρ0
.

(D.3)

Using notations (D.2) and (D.3), the Jacobi identity is equivalent to the equation

T = ∇0S × ∇0 (�abc + �bca + �cab) = 0. (D.4)
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Noting that

�abc ≡ ∇0S ·∇0 × (�ab∇0�c)

ρ0
, (D.5)

we find

� = �abc + �bca + �cab = ∇0S · ∇0 × W
ρ0

, (D.6)

where

W = �ab∇0�c + �bc∇0�a + �ca∇0�b. (D.7)

If

K = ∇0�a × ∇0�b · ∇0�c ≡ ∂(�a,�b,�c)

∂(x0, y0, z0)
�= 0, (D.8)

then we can use (�a,�b,�c) as independent variables to replace (x0, y0, z0). Using the above
transformation of independent variables we find

�ab = K

ρ0

∂S

∂�c

, �bc = K

ρ0

∂S

∂�a

, �ca = K

ρ0

∂S

∂�b

, (D.9)

where we have used the expansion

∇0S = ∂S

∂�a

∇0�a +
∂S

∂�b

∇0�b +
∂S

∂�c

∇0�c. (D.10)

Using (D.9) and (D.10) in (D.7) we obtain

W = K

ρ0
∇0S. (D.11)

Substitution of (D.11) in (D.6) gives

� = ∇0S

ρ0
· ∇0 ×

(
K

ρ0
∇0S

)
= 0. (D.12)

Since � = 0 then T = 0 in (D.4). This proves the Jacobi identity for this case.
If K = 0 then �c = f (�a,�b), for some function f because �a,�b and �c are

dependent functions if K = 0. A straightforward calculation of W in this case shows that
W = 0, � = 0 and T = 0 so that the Jacobi identity also holds in this case as well. The
above analysis suggests that the geometry of vector fields Xj is more transparent if we use an
independent set of the �j as the independent variables.
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